

Nigerian Journal of Applied Physics (NJAP)

ISSN Print: 3115-5871 ISSN Online: 3115-588X

DOI: 6https://doi.org/10.62292/njap-v2i1-2026-28

Volume 2(1), March 2026

The Use of Instrumental Neutron Activation Technique to quantify Na, K, Fe, Co, and Zn in Ajiwa Dam Sediments Employing a Miniature Neutron Source Reactor

*Haruna Halilu and Emmanuel Joseph

Department of Physics, Federal University Dutsin-Ma, Katsina State, Nigeria

*Corresponding author's email: 020harunahalilu@gmail.com

ABSTRACT

Identifying and quantifying trace amounts of chemical elements in a sample particularly in sediments has helped researchers to understand their characteristics. This study investigates the elemental composition of five essential elements for plants growth and radiological significance of Ajiwa Dam sediments using Instrumental Neutron Activation Analysis (INAA) at the NIRR-1 Miniature Neutron Source Reactor (MNSR), Ahmadu Bello University, Zaria. Concentrations of Na, K, Fe, Co, and Zn were quantified in ten sediment samples collected from different locations around the dam randomly selected. The results show dominance of Fe and K, with mean concentrations of 19,811 mg/kg and 10,622 mg/kg respectively, followed by Na (1,400 mg/kg), Zn (43.3 mg/kg), and Co (4.9 mg/kg). Statistical analysis revealed moderate variation among elements (CV = 16-37%) and strong correlations between Fe-Co (r = 0.82) and Fe-Zn (r = 0.74), suggesting common lithogenic origins. Radiological evaluation based on potassium-40 (K-40) activity yielded an average absorbed dose rate of 4.2 nGy/h and an annual effective dose of 0.0051 mSv/year, well below the global average limit (0.07 mSv/year). The findings indicate that Ajiwa Dam sediments are geochemically natural and radiologically safe for aquatic life and human use.

Keywords:

Ajiwa Dam, INAA, Trace elements, Sediments, NIRR-1 reactor, Radiological assessment.

INTRODUCTION

Sediments serve as key indicators of environmental quality, reflecting both natural geochemical processes and anthropogenic inputs. Earlier report indicated that sediments represent significant sources of heavy metal pollution in the aquatic environment as a result of changes in pH, redox potential or diagenesis or physical perturbation within their primary sedimentary sinks (Akan et al., 2010). The occurrences of enhanced concentrations of heavy metals especially in sediments may be an indication of human induced perturbation rather than natural enrichment through geological weathering (Daves et al., 2006, Binning and Baird, 2001, Eja et al, 2003). The significance of heavy metals in the environment is that they are non-biodegradable, persist in the environment and may become concentrated up the food chain (Eja, 2003). It is usually observed that sediments near urban areas contain high level of contaminants (Cooks and Wells, 1996; Lamberson et al., 1992), which constitute a major problem to the environment being faced by many anthropogenically impacted aquatic environment (Magalhaes et al., 2007). Sediments act as both carrier and sources of contaminants

in aquatic environment (Shuhaimi, 2008), they considered as sink for heavy metals (Atta et al, 1997, Adeniyi and Yusuf, 2007, Chyne-Eng et al., 1987, Olowu et al., 2010). Pollutants released to surface water from industrial and municipal discharges, atmospheric deposition and run off from agricultural, urban and mining areas can accumulate to harmful levels in sediments (Chukwujindu et al., 2007). Additional report has also stated that sediments are an important sink of a variety of pollutants, especially in estuarine ecosystems (Veettil et al., 2019). Metals such as zinc, copper, and chromium are crucial for the functioning of living organisms. However, over-consumption of these metals causes a variety of undesirable effects. Furthermore, due to the bioaccumulation biomagnification of toxic metals, toxicity increases from low to high trophic levels in aquatic and terrestrial ecosystems will be most severely affected (Talukder et al., 2021; Yunus et al., 2020). Therefore, it is essential to monitor trace elements in sediment to increase knowledge of environmental processes. The elemental composition of nearby pollutant sources and other factors all influence the concentration of elements in sediment (Tiwari et al., 2020).

A number of studies of elements which are beneficial to plant and along major sediments have been carried out in different locations in Nigeria using various analytical techniques: Owalla Reservoir, Osun State, SW Nigeria (Aduwo & Adeniyi, 2018); Stream sediments, Jos Plateau, North-central Nigeria (Odewumi, 2024); Stream sediments, about 400 km² area (lat ~7°N, long ~5°E) – Nigeria (Awosusi & Adisa, 2020): Coastal sediments at Araromi, Southwestern Nigeria (Samuel, Adebayo & Olajide, 2022); Sediments of Warri River, Niger Delta region, Nigeria (Akinwole et al., 2024); among others. Many studies however are localized; hence broader spatial coverage across Nigeria is still needed. The highprecision, nuclear quantitative analytical technique of instrumental neutron activation analysis (INAA) is currently been used by many Researchers in the investigation of various environmental samples such as sediments or soils in particular due to its very high sensitivity. Instrumental Neutron Activation Analysis (INAA) is a precise, multi-elemental, and non-destructive nuclear technique that utilizes neutron irradiation to determine trace elements in environmental matrices (Iyengar and Kasperek (1977). The NIRR-1 Miniature Neutron Source Reactor (MNSR) at Ahmadu Bello University, Zaria, provides an ideal setup for this analysis due to its stability, reproducibility, and low detection limits.

Understanding the distribution of trace elements in sediments is essential for assessing ecosystem health, sediment contamination, and radiological impacts. The Ajiwa Dam, located in Katsina State, Nigeria, provides potable and irrigation water for surrounding communities; hence, studying its sediment quality is critical for long-term environmental monitoring. In the present work, this analytical technique was used to study the concentrations of five trace elements in ten (10) sedimentary cores that were collected from the Ajiwa dam, located in the Katsina State, North – West Nigeria, with the aim of profiling these elements that are known to be essential to plant.

The determination of the composition and concentrations of the five trace elements in ten (10) sedimentary cores that were collected from the Ajiwa dam was performed using the Instrumental Neutron Activation Analysis (INAA). INAA is a very precise technique mainly used to determine trace concentrations of elements in samples and/or to acquire information on the spatial distribution of a neutron field via neutron activation detectors (Majerle, 2006; Joseph et al., 2024). This technique is normally based upon the conversion of stable nuclei to other, mostly radioactive nuclei via nuclear reactions, and

measurement of the reaction products. The use of the INAA (relative) method for the calculation of the concentration of each element in the sample irradiated with reactor thermal neutron reduces the NAA equation to the simplest form (IAEA, 1990):

$$\frac{w}{w_{st}} = \frac{N_s D_{st}}{N_{st} D} = \frac{N_s e^{-\lambda t d(st)}}{N_{st} e^{-\lambda t d}}$$
(1)

Where N_s = net photo peak area of radionuclide of interest in sample, N_{st} = net photo peak area of radionuclide of interest in standard, W = weight of element in sample irradiated, W_{st} = weight of the element in standard irradiated, $D = e^{-\lambda t d}$ =decay factor for sample, $D_{st} = e^{-\lambda t d(st)}$ =decay factor for standard, t_d = decay time for sample, td(st) = decay time for standard, t_d = decay constant for radionuclide of interest

The concentration of the unknown element in the sample denoted by Cs is given by

$$C_s = \frac{W}{M} \tag{2}$$

where M= known weight of the irradiated sample containing the unknown weight of the element irradiated, W= unknown weight of the element irradiated.

MATERIALS AND METHODS

Sample Collection and Preparation

Ten sediment samples (A-J) were collected from different zones of Ajiwa Dam using a grab sampler at 0-10 cm depth. The Aerial photograph showing Ajiwa Dam and spatial distribution of aquatic plant sources (Figure 1). The samples of about 1 kg each were collected in polythene bags that were previously cleaned by soaking in 1:1 HNO₃ for 3 days were air-dried, ground, homogenized, and sieved to <63 um fraction to ensure uniform particle size. The samples were prepared for irradiation without further treatment at the sample preparation laboratory, Centre for Energy Research and Training, CERT, Ahmadu Bello University, Zaria, alongside with the certified reference materials CRM-NIST Coal Fly Ash 1633b supplied by U.S. National Institute of Standards and Technology for verification and quality control purposes for analysis by INAA. Approximately 200 mg of each sample was encapsulated in polyethylene vials and irradiated in the NIRR-1 reactor operating at 30 kW thermal power with a neutron flux of $5 \times 10^{11} \text{ n} \cdot \text{cm}^{-2} \cdot \text{s}^{-1}$. The samples were placed in a highdensity polythene vial, and weighted using a Mettler Toledo balance model AE 240. These measured samples were double heat sealed in small pieces of cleaned polythene sheets using heat from a modern drier.

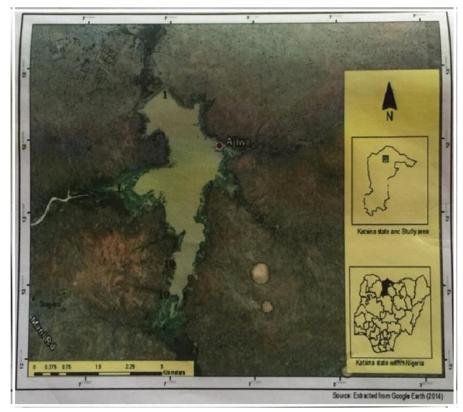


Figure 1: Aerial photograph showing Ajiwa Dam and spatial distribution of aquatic plant

The irradiation facility used for this study is the Nigeria Research Reactor-1 (NIRR-1) at the Centre for Energy Research and Training, Ahmadu Bello University, (CERT, ABU), Zaria which is a Miniature Neutron Source Reactor (MNSR) facility, specifically designed for neutron activation analysis (NAA) and commissioned for operation in February 2004. The detailed description of NIRR-1 reactor and the irradiation facility as well as the theory, methodology, among other of INAA have been documented (Jonah et al., 2004; Jonah et al., 2005; Jonah et al., 2006; Jonah et al., 2012; Joseph et al., 2011; Joseph et al., 2013; Joseph et al., 2015a; Joseph et al., 2015b; Joseph et al., 2017; Abubakar & Joseph, 2023).

The Radioactivity Measurements Device is a gamma-ray data acquisition system which consists of a horizontal dipstick High-Purity Germanium (HPGe) detector with a relative efficiency of 10 % at 1332.5 keV gamma-ray line, the MAESTRO emulation software compatible with the ADCAM® multi-channel analyzer (MCA) card, associated with electronic modules all made by EG & G ORTEC and a personal computer whose details has been described by Jonah et al. (2006) and later by Joseph & Nasiru (2013). The efficiency curves of this detector system at both near and far source-detector geometries have been determined by standard gamma-ray sources in the energy range of 59.5-2254 keV and were later extended to 4000 keV by a semi empirical method (Jonah

and Sadiq, 2006). The gamma-ray spectrum analysis software WINSPAN 2004 (Liyu, 2004), a software developed at CIAE, Beijing, China, was used for the peak identification, spectra analysis, and quantification of the elements present.

Statistical and Radiological Analysis

Descriptive statistics (mean, standard deviation, coefficient of variation) and correlation coefficients were computed using Microsoft Excel. Radiological assessment was performed from potassium concentrations using the relationships between K content, K-40 activity, absorbed dose rate, and annual effective dose as prescribed by UNSCEAR (2000).

The radiological contribution from potassium was estimated using the following relations UNSCEAR (2000):

$$A_{K40} = 313 \times K(\%)$$
 (3)

$$D_{k40} = 0.0417 \times A_{K40} (nGy/h) \tag{4}$$

$$D_{k40} = 3.13 \times R(70)$$

$$D_{k40} = 0.0417 \times A_{K40} (nGy/h)$$

$$E_{annual} = D_{k40} \times 8760 \times 0.2 \times 0.7 \times 10^{-6} (mSv/y)$$
(5)

where A_{k40} is the activity of K-40 in Bq/kg and D_{k40} is the absorbed dose rate.

RESULTS AND DISCUSSION

The elemental concentrations of Na, K, Fe, Co, and Zn in Ajiwa Dam sediments are presented in Table 1 with mean concentrations of 1400.1 ± 284.9 , 10622.4 ± 1776.6 , 19811.0 ± 4498.2 , 4.93 ± 0.84 and 43.3 ± 15.8 mg/kg respectively (Figure 1). The Boxplots of the Elemental Concentrations in Ajiwa Dam Sediments is also presented in Figure 2 showing the variations of trace element composition at the Ajiwa Dam. The average elemental abundance followed the order Fe > K > Na > Zn > Co, indicating dominance of iron-bearing minerals (Turekian & Wedepohl, 1961). Moderate coefficients of variation (CV < 37%) indicate relatively consistent distribution of elements across sampling locations (Table 1). The

relatively low variability (CV < 25%) for major elements indicates consistent lithology, while the moderate Zn variability suggests minor anthropogenic contributions, possibly from agricultural runoff (Turekian & Wedepohl, 1961). The dominance of Fe and K reflects the geochemical nature of the catchment, likely influenced by iron oxide and feldspathic minerals (Turekian & Wedepohl, 1961). The strong correlations between Fe–Co and Fe–Zn (Table 2) suggest that these elements may originate from common lithogenic sources, possibly iron-bearing minerals (USEPA, 2002).

Table 1: Essential elements for plant growth measured (mg/kg) from Ajiwa Dam Sediments

Element	Na	K	Fe	Со	Zn
Sample A	1537	11060	17630	4.78	37.2
Sample B	1277	9392	16030	4.153	51.1
Sample C	1558	11510	27830	6.464	39.8
Sample D	1818	13150	25510	6.412	48.25
Sample E	1547	11600	21870	5.472	55.56
Sample F	1498	9772	18130	4.417	20.4
Sample G	139.5	8946	18130	4.857	57.31
Sample H	1223	6954	15170	4.014	23.85
Sample I	1555	10710	18240	4.607	69.16
Sample J	1490	12530	18370	4.406	32.81
Range (mg/kg)	139.5-1818	6954-13150	15170-27830	4.01-6.46	20.4-69.2
Mean \pm SD	1400.1 ± 284.9	10622.4 ± 1776.6	19811.0 ± 4498.2	4.93 ± 0.84	43.3 ± 15.8
CV (%)	20.3	16.7	22.7	17.0	36.5

Table 2: Correlation Matrix of the Elements

Element	Na	K	Fe	Co	Zn
Na	1	0.68	0.55	0.61	0.46
K	_	1	0.70	0.59	0.52
Fe	_	_	1	0.82	0.74
Co	_	_	_	1	0.64
Zn	_			_	1

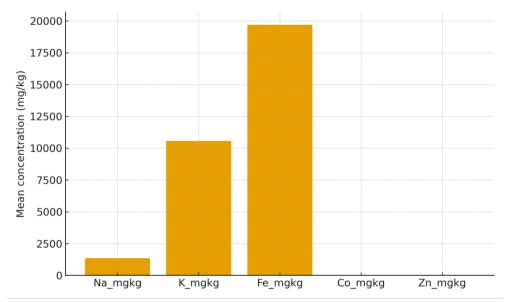


Figure 2: Mean Concentrations of Elements in Ajiwa Dam Sediments

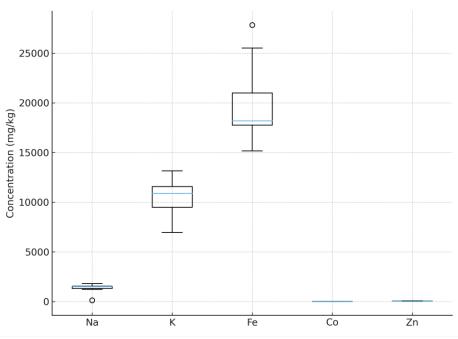


Figure 3: Boxplots of Elemental Concentrations in Ajiwa Dam Sediments

Pearson's correlation analysis (Figure 4) was employed to investigate the correlations among the trace elements (Na, K, Fe, Co, and Zn). Fe–Co (r=0.82) and Fe–Zn (r=0.74) were highly correlated with each other, signifying that human activities have likely played a large role in reaching their current concentrations (Wang et al., 2012).

The Fe-Co-Zn association highlights co-precipitation processes and possible adsorption onto Fe/Mn oxides. Comparatively, the elemental concentrations fall within the natural background levels reported for other Nigerian water bodies, such as Gubi and Tiga Dams (Ajayi & Balogun, 2002).

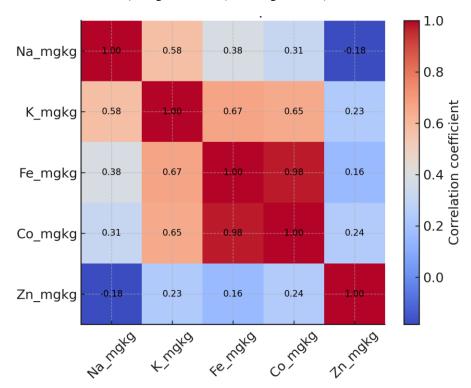


Figure 4: Correlation Heatmap of Elements displaying inter-elemental relationships

Halilu and Joseph

Trace Elements distribution of Ajiwa Dam Sediments Sodium in the Aijwa Dam sediments measured in all the locations (Table 1) was observed at a mean concentration of $1,400 \text{ mg} \cdot \text{kg}^{-1}$ (range $139.5 - 1,818 \text{ mg} \cdot \text{kg}^{-1}$), indicating relatively uniform distribution. Converted to mass percent this corresponds to $\approx 0.14\%$ Na on average, with one notably low sample (Sample G: 139.5 mg·kg⁻¹) that may reflect a local lithological or depositional anomaly, a measurement/labeling issue, or a strongly diluted grain-size fraction at that site. Sodium originates mainly from lithogenic sources, such as the weathering of Na-bearing feldspars (albite) and silicate minerals, and minor inputs from surface runoff and evaporative concentration (Horowitz, 1985). The overall magnitude (hundreds to low thousands mg·kg-1) is typical for lacustrine/riverine sediments where Na is present mostly in exchangeable and soluble forms rather than tightly bound to refractory minerals (Chele et al., 2021).

Potassium averaged 10,622 mg·kg⁻¹ (range: 6,954– 13.150 mg·kg⁻¹), equivalent to about 1.06 % K. K occurs primarily in K-feldspars, micas, and illite clays, reflecting lithogenic (Horowitz, 1985; Ajayi and Balogun, 2002). Agricultural fertilizers may contribute minor anthropogenic inputs (Ajayi and Balogun, 2002). Fe on the other hand showed the highest abundance among the studied elements, with (range: 15,170mean of 19,811 mg·kg⁻¹ 27,830 mg·kg⁻¹). High Fe concentrations indicate dominance of lithogenic inputs and secondary oxide redox formation through cycling (Horowitz, 1985; Zhang et al., 2014). Iron oxides and oxyhydroxides are strong sorbents for trace metals and this explains the observed Fe-Co (r = 0.82) and Fe-Zn (r = 0.74) respectively as presented in Figure 5 and Figure

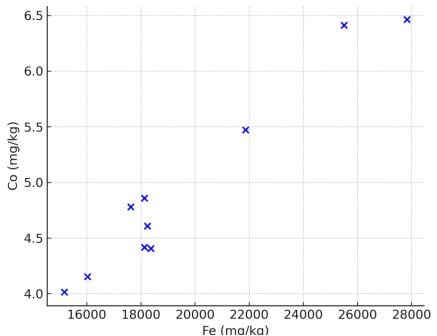


Figure 5: Scatter plots of Fe vs Co Correlation in Sediments

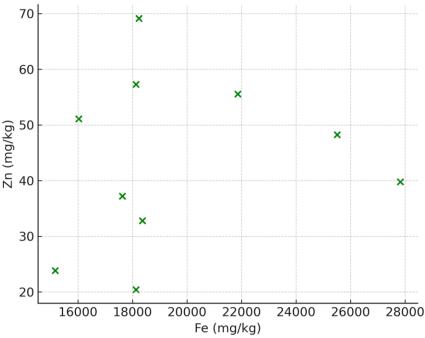


Figure 6: Scatter plots of Fe vs Zn Correlation in Sediments

Furthermore, cobalt concentrations which ranged from 4.01 to $6.46 \,\mathrm{mg\cdot kg^{-1}}$ $(mean = 4.93 \text{ mg} \cdot \text{kg}^{-1}),$ typically associated with Fe-Mn oxides and clay minerals and its mobility depend on redox potential (Xu et al., 2022). In oxic sediments, Co is strongly adsorbed on Fe oxides, whereas under reducing conditions it becomes mobilized (Zhang et al., 2014). The narrow concentration range and strong correlation with Fe lithogenic dominance and indicate minimal anthropogenic influence (Zhang et al., 2014). concentrations observed here are within global limit (Adeniyi and Yusuf, 2007). Zn concentrations in this averaged 43.3 mg·kg⁻¹ study (range: 20.4-69.16 mg·kg⁻¹), with a coefficient of variation of 37 %. Zinc arises primarily from mineral weathering and to a lesser extent from anthropogenic inputs such as agricultural runoff (Horowitz, 1985). Zn is readily adsorbed by Fe oxyhydroxides and clay minerals, explaining the strong correlation with Fe (r = 0.74)(Trivedi and Axe, 2001; Zhang et al., 2014).

The elemental composition of Ajiwa Dam sediments indicates a predominantly lithogenic origin, with Fe

oxides and hydroxides playing a critical role in trace-metal retention. The strong Fe–Co and Fe–Zn correlations confirm this association. Na and K reflect catchment lithology and hydrochemical processes. This current work shows that the metals are all within background levels, which agrees with the work of Aduwo and Adeniyi (2018). It also agrees with the works of Samuel et al. (2022) and Akinwole et al. (2024) that anthropogenic activities in the region contribute to heavy metal loads in sediments.

Radiological Effect Assessment

The average potassium concentration (1.06%) corresponds to a mean K-40 activity of 331 Bq/kg (Table 3). The resulting absorbed dose rate and annual effective dose were equally calculated (Table 3). These results are also presented in Figure 7 showing that all measured values are well below international limits, confirming no radiological hazard from natural radioactivity in the sediments (Turekian and Wedepohl, 1961).

Table 3: Radiological Effect Results

Parameter	Range	Mean ± SD	Global Reference
K-40 activity (Bq/kg)	217-412	331 ± 49	400 (typical soil)
Absorbed dose (nGy/h)	9.05 - 17.1	13.8 ± 2.0	59 (UNSCEAR, 2000)
Annual effective dose (mSv/y)	0.0043 - 0.0076	0.0051 ± 0.0007	0.07 (limit)

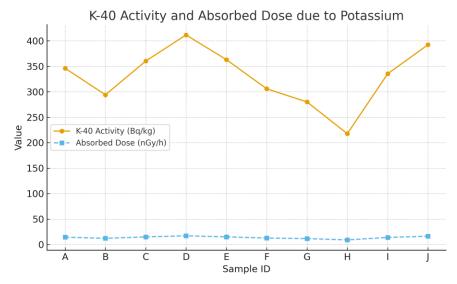


Figure 7: K-40 Activity and Absorbed Dose due to Potassium

The naturally occurring constitutes 0.0117 % of total K, yielding an estimated specific activity of ~331 Bq·kg⁻¹ (UNSCEAR, 2000). The resulting absorbed dose rate was 13.8 ± 2.0 nGy/h, with an annual effective dose of 0.0051 ± 0.0007 mSv/year. These values are significantly below the UNSCEAR global average of 59 nGy/h and 0.07 mSv/year, confirming that the sediments pose no radiological hazard (UNSCEAR, 2000). Previous study has shown that K-40 is one of the main sources of background radiation (World Nuclear Association, 2011). It has also been shown that K-40 may contribute to long-term cumulative radiation doses and elevate the excess lifetime cancer risk of the population (UNSCEAR, 2000; ICRP, 2007).

CONCLUSION

The INAA technique using the NIRR-1 reactor effectively quantified Na, K, Fe, Co, and Zn in Ajiwa Dam sediments. The dominance of Fe and K reflects natural geological sources, while the strong Fe-Co-Zn correlation indicates common mineralogical origins. Statistical evaluation indicates mainly natural rather than anthropogenic geochemical controls enrichment. The radiological evaluation confirmed that Ajiwa Dam sediments are environmentally and radiologically safe for aquatic life and human use. Continuous monitoring is recommended to ensure the sustainability of Ajiwa Dam as a safe water resource.

ACKNOWLEDGEMENTS

This study was supported by the Centre for Energy Research and Training, Ahmadu Bello University, Zaria. The authors would like to thank the Centre for the access provided.

radioisotope 40K the Centre for Energy Research and Training, Ahmadu Bello University, Zaria.

REFERENCES

Abubakar, I., & Joseph, E. (2023). Instrumental Neutron Activation Technique in Characterization of Elements in Organs of Some Fish Species Harvested from Zobe Dam, Katsina State. European Journal of Science, Innovation Technology, 3(3), 381-397. Retrieved from https://eisit-journal.com/index.php/eisit/article/view/225

Adeniyi, A. A. and Yusuf K. A. (2007): Environmental Monitoring Assessment 37 451-458.

Aduwo, A.I. & Adeniyi, I.F. (2018). The heavy metals/trace elements contents of sediments from Owalla Reservoir, Osun State, Southwest Nigeria. Advances in Oceanography and Limnology, 68-78. 9(2),https://doi.org/10.4081/aiol.2018.7576

Ajayi, I.R., & Balogun, F.A. (2002). Elemental analysis of soil and sediment samples in Nigeria by INAA using NIRR-1 reactor. Journal of Radioanalytical and Nuclear Chemistry, 254(2), 347–354.

Akan, J. C. Abdulrahman, F. I. Mamza, P. T. Aishatu, N. (2010): Effect of Environmental pollution on the quality of River Ngada Maiduguri Metropolis, Borno State, Nigeria. Global Science Books. Terrestrial and Aquatic Environment Toxicology 6 (11): 40-48.

Atta, M. B. El-Sebale, L. A. Naoman, M. A. and Kassab, H. (1997): Food Chemistry 58.1-4

Funding This study was supported by the Department of Awosusi, O.O. & Adisa, A.L. (2020). Geochemical Physics, Federal University Dutsin-Ma, Katsina State and assessment of heavy metal pollution of river basin in

Advanced Geosciences. 7(2). https://doi.org/10.14419/ijag.v8i1.29965

Ayodele, O.S. (2016). Geochemical Exploration for Heavy Metals in the Stream Sediments of Okemesi-Ijero Area. Journal of Advance Research in Applied Science, 3(4), 1-15. https://doi.org/10.53555/nnas.v3i4.648

Binning, K. and Baird, D. (2001): Survey of heavy Metals in the Sediments of the Swatkops River estuary, Port Elizabeth South Africa. Water S. A 24 461-466.

Chukwujindu, M. A., Iwegbue, G. E. N., and Francis, O. A. (2007): Assessment of contamination by Heavy Metals in Sediments of River Ase, Niger Delta. Nigeria Research Journal of Environmental. Science, 1 (5):220 -228.

Chyne-Eng, S. Poh-Eng, S. and Tian-Tse, A. (1987): MARINE Pollutant Bulletin 18 (1) 611-612

Cook, N. H. and Wells P. G. (1996): Toxicity of Halifax Habour Sediments; An Evaluation of Microlox Solid Phase Test. Water Quality Research. Journal. Canada 31(4): 673-708.

Davies, O. A., Alison, M. E., and Ugi, M. S. (2006): Bioaccumulation of Heavy Metals in Water Sediments and Periwinkle (tymponotonus fuscatus Varnadula) from the Elechi Creek, Niger Delta. African Journal of Biotechnology 5 (10): 969 -973.

Eja, C. E. Ogri, O. R. and Arikpo, G. E. (2003): Bioconcentration of Heavy Metals in Surface Sediments from the Great Kwa River Estuary, Calabar southeast, Nigeria. Nigeria Journal Environmental. Science. 1; 47-56.

FAO. (1988). Saline Soils and Their Management. FAO S oils Bulletin 39, Food and Agriculture Organization of the United Nations, Rome.

Horowitz, A.J. (1985). A Primer on Trace Metal.Sedimen t Chemistry. U.S. Geological Survey Water-Supply Paper 2277.

IAEA. (1990). Practical Aspects of Operating a Neutron Activation Analysis Laboratory, IAEA TECDOC-564 IAEA, Vienna, Autria, pp. 9-18, 36-37, 50-95.

ICRP (2007). The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Annals of the ICRP, 37, 2-4.

Nigeria using stream sediment. International Journal of Iyengar, G.V., & Kasperek, K. (1977). Elemental analysis 198-207. of environmental samples by neutron activation. Analytica Chimica Acta, 93(2), 321–334.

> Jonah, S. A., Balogun, G. I., Mayaki, M. C. (2004). Fullenergy Efficiency Curves of NIRR-1 Gamma Ray Spectrometer at Different Source-Detector Positions, Internal Report, CERT/NIRR-1/NAA/01, 2004.

> Jonah, S. A., Ibrahim, Y. V., Ajuji, A. S., Onimisi, M. Y. (2012) The impact of HEU to LEU conversion of commercial MNSR: Determination of neutron spectrum parameters in irradiation channels of NIRR-1 using MCNP code. Annals of Nuclear Energy 39: 15-17.

> Jonah, S.A.; Balogun, G. I., Umar, I.M.; Oladipo, M.O.A.; Adeyemo D.J. (2006). Standardization of Nigeria Research Reactor – 1 (NIRR – 1) irradiation and counting facilities for instrumental neutron activation analysis. Applied Radiation and Isotopes 64. 818 - 822

> Jonah, S.A.; Balogun, G. I.; Umar, I.M.; Mayaki, M.C. (2005). Neutron Spectrum parameters in irradiation channels of the Nigeria Research Reactor – 1 (NIRR – 1) for k_0 – NAA standardization. J. Radioanal. Nucl.Chem..266(1). 83 – 88.

> Joseph, E. & Nasiru, R. (2013). Geometry Correction in Efficiency of a Sodium Iodide (Thallium Activated), NaI(Tl) Detector. Advances in Applied Science Research. 4(1):400-406. Pelagia Research Library/USA

> Joseph, E., Ahmed, Y. A. & Ikechiamaka, F. N. (2017). Application of k₀-INAA technique for the analysis of essential and beneficial heavy elements in soil. FUDMA Journal of Sciences (FJS). Maiden Edition. Vol. 1. No. 1, pp. 1 - 6.

> Joseph, E., Lawal, A. U., Ubaidullah, A. & Kado, S. (2024). JHealth Implication and Nutritional Value of Baobab Leaves in Katsina State, Nigeria Using Instrumental Neutron Activation Analysis. International Journal of Applied Science and Research. 7(4): 98-114. https://doi.org/10.56293/IJASR.2024.5712

> Joseph, E., Nasiru, R., Sadiq, U., Ahmed, Y.A. (2015). Energy and Efficiency Calibrations for High Purity Germanium GEM30195 Coaxial Detector using k₀-IAEA Software. International Journal of Science and Research, Vol. 4, No. 8: 1055 – 1061, India

> Joseph, E., Nasiru, R., Sadiq, U., Ahmed, Y.A. (2015). The use of k₀ - NAA Standardization Technique in evaluating elements of significance for plant growth in the cultivated areas of Dutsin-Ma Local Government, Katsina State-Nigeria, IOSR Journal of Applied Physics (IOSR-

JAP) e-ISSN: 2278-4861.Volume 7, Issue 5 Ver. I (Sep. - Oct. 2015), PP 49-59, https://doi.org/10.9790/4861-07514959, www.iosrjournals

Joseph, E., Sadiq, U., Ahmed, Y.A. (2016). Evaluation of some elements concentration in Agricultural soil of Dutsin-Ma Local Government Area using Energy Dispersive X-Ray Fluorescence technique. FUDMA Journal of Science & Educational Research (FJSER) Special Edition Vol. 2 No. 1 pp. 25-30.

Lamberson, J. O. Dewit T.H. Swartz, R. C. (1992): Assessment of Sediment Toxicity to Marine Benthos Incorporated: Burton G. A (Ed): Sediment Toxicity Assessment, Lewis Publish. Bcca Raton, Flpp 183-211

Liyu, W. (2004). WINSPAN 2004, A Multi-Purpose Gamma-Ray Spectrum Analysis Software. CIAE, Beijing, China.

Magahaes, C, Coasta, J, Teixeira, C, Bordalo, A. A. (2007): Impact of Trace Metals on Dentrification in Estuarine Sediments of the Douro River Estuary, Portugal Marine Chemistry, 10; 332 341.

Majerle, M. (2006). Experimental studies and simulations of spallation neutron production on a thick lead target. Journal of Physics: Conference Series, 41:331(339).

Odewumi, S.C. (2024). Mineralization, geochemical signatures, and provenance of stream sediments on the Jos Plateau, Northcentral Nigeria. Journal of the Nigerian Society of Physical Sciences, 6(4), 2181. https://doi.org/10.46481/jnsps.2024.2181

Olowu, R. A. Ayejuyo, O. O. Adewuyi, G. O. Adejoro, A. A. B. Denloye, A. O. B. and Ogundajo, A. I. (2010): Determination of Heavy Metals in Fish Tissues, Water and Sediments from Epe and Badagry Lagoons lagos, Nigeria. E-Journal of Chemistry 7(1): 215-221

Samuel, A.O., Adebayo, A.E. & Olajide, O.S. (2022). Sequential Analysis and Geochemical Characterization of Heavy Metals in Araromi Coastal Sediments, Southwestern Nigeria. Journal of Health and Environmental Research, 8(2), 96-107. https://doi.org/10.11648/j.jher.20220802.15

Shuhaimi, M. O. (2008): Metals Concentration In the Sediments of Richard Lake, Sudbury, Canada and Sediment Toxicity in an Ampipod Hyalelaacteca Journal Environmental Science Technology. 1: 34-41

Talukder, R., Rabbi, M.H., Baharim, N.B., & Carnicelli, S. (2021). Source identification and ecological risk assessment of heavy metal pollution in sediments of Setiu wetland,

Malaysia Environ Forensics, https://doi.org/10.1080/15275922.2021.1892871.

Tiwari, M., Sahu, S.K., Rathod, T.D., Bhangare, R.C., Ajmal, P.Y., & Vinod Kumar, A. (2020). Determination of trace elements in salt and seawater samples by energy dispersive X-ray fluorescence spectrometry. Journal of Radioanalytical and Nuclear Chemistry, 325, 751-756. https://doi.org/10.1007/s10967-020-07187-5

Trivedi, P., and Axe, L. (2001). An analysis of zinc sorption t o hydrous iron oxides: Mechanisms and modeling. Journal of Colloid and Interface Science, 244(2), 221–229.

Turekian, K.K., & Wedepohl, K.H. (1961). Distribution of elements in the Earth's crust. Geological Society of America Bulletin, 72, 175–192.

UNSCEAR. (2000). Sources and Effects of Ionizing Radiati on. United Nations Scientific Committee on the Effects of Ionizing Radiation Report to the General Assembly, with Scientific Annexes, United Nations, New York.

USEPA (2002). Sediment Quality Guidelines for Trace Elements and Organic Pollutants. United States Environmental Protection Agency.

Veettil, B.K., Ward R.D., Quang, N.X., Trang, N.T.T, & Giang, T.H. (2019). Mangroves of Vietnam: Historical Development, Current State of Research and Future Threats. Estuarine, Coastal and Shelf Science, 218, 212–236. https://doi.org/10.1016/j.ecss.2018.12.021

Wang, Y., Hu, J., Xiong, K., Huang, X., & Duan, S. (2012). Distribution of heavy metals in core sediments from Baihua Lake. Procedia Environmental Sciences, 16, 51–58

World Nuclear Association (2011). https://www.world-nuclear.org/information-library/facts-and-figures/world-nuclear-power-reactors-archive/reactor-archive-august-2011.aspx

Xu, F., Wang, Q., Chen, Y., and Li, J. (2022). Assessing the environmental risk and mobility of cobalt in sediments: Influ ence of redox and organic matter. Environmental Pollution, 3 07, 119527.

Yunus, K., Zuraidah, M. A., & John, A. (2020). A review on the accumulation of heavy metals in coastal sediment of Peninsular Malaysia. Ecofemininism Climate Change, 1, 21-35. https://doi.org/10.1108/EFCC-03-2020-0003.

Zhang, C., Yin, Y., and Wang, L. (2014). Effects of sediment geochemical properties on heavy metal mobility and bioavailability. Environment International, 73, 270–281.