Optimisation of Polyacrylic Acid Usage as Surfactant in Hydrothermally Synthesised Cu2ZnSnS4 Thin Films for Application as Counter Electrode in Dye Sensitised Solar Cell

Authors

  • Kasim Ibrahim Mohammed
    Niger State Polytechnic Zungeru
  • Kasim Uthman Isah
    Federal University of Technology Minna
  • Uno Essang Uno
    Federal University of Technology Minna
  • Abdullahi Mann
    Federal University of Technology Minna
  • Mohammed Ahmed
    Niger State Polytechnic Zungeru
  • Najeebullah Yahuza
    Niger State Polytechnic Zungeru
  • Nafarizal Nayan

Keywords:

CZTS, Hydrothermal, Surfactant, Polyacrylic acid

Abstract

Cu2ZnSnS4 (CZTS) being an earth abundant material are non-toxic, low cost and belongs to the third generation photovoltaic (PV) material when used as counter electrode in dye sensitised solar cells. CZTS nanoparticle slurries were synthesised using hydrothermal method for application as counter electrode in dye sensitised solar cells. In order to optimise the synthesis process, the polyacrylic acid (PAA) used as surfactant in the precursor solution was varied thus: 0.0 g, 0.6 g, 1.0 g and 1.4 g. The XRD revealed peaks of CZTS (112) and (220) for the sample synthesised using 1.0 g PAA and in addition, numerous other peaks were observed for the remaining samples. The crystallite sizes ranged between 7 and 19 nm. Raman spectra of the films reveal CZTS peaks of 338, 351 and 252 cm-1 for samples synthesised using 1.0 g PAA precursor while ZnS, SnS, Cu3SnS3, Cu3SnS4, Sn2S3 secondary and ternary phases were observed for other amounts in addition to the 338 CZTS peak. SEM image show spherical nanoparticles and agglomerated nanosphere-like shapes. The Cu: Zn: Sn: S atom ratios were close to stoichiometry for 1.0 g polyacrylic acid and 0.6 g PAA. The surface roughness was between 800 and 1500 nm. The bandgap ranged between 1.51 eV and 1.54 eV. In order to test for the photovoltaic activity of the best CZTS materials film sample, it was used as a counter electrode in dye sensitised solar cell. The assembled cell after characterisation yielded an energy conversion efficiency of 3.2%.

Dimensions

Ahn, D., Brag, H. O. & Zhika, D. (2010). The physics of solar cells. Imperial college press, London. 29-37.

Anurag, R., Parukuttaymma, S. D., Smagul, K., Mamedov, D., Tapas, K. M. & Senthilarasu S. (2018). A review on applications of Cu2ZnSnS4 as alternative counter electrodes in dye sensitized solar cells. AIP advances, (8), 701-707.

Chalapathi, U., Uthanna, S. & Raja, S. (2015). Growth of Cu2ZnSnS4 thin films by a two stage process-Effect of incorporating of sulfur at the precursor stage. Solar Energy Materials and Solar Cells, (132), 476-484.

Chang, S. H., Lu, M. D., Tung, Y. L. & Tuan, H. Y. (2013). Gram-scale synthesis of catalytic Co9S8 nanocrystal ink as a cathode material for spray-deposited, large-area dye-sensitized solar cells. ACS Nano, (7), 9443-9451.

Chopra, K. L., Paulson, P. D. & Dutta, V. (2024). Thin film solar cell: an overview. Programmed Photovolt: Research Application, (12), 69-92.

Fernandes, M., Cao, L., Zhang, B. L. & Jiang, J. C. (2009). One step deposition of CZTS thin films for solar cells. Solar Energy Materials and Solar Cells, (117), 81-86.

Habib, S. L., Idris, N. A., Ladan, M. J. & Mohammed, A. G. (2012).Unlocking Nigeria’s solar PV and CSP potentials for sustainable electricity development. International Journal of Scientific and Engineering Research, (5), 2010-2012.

Hardin, B. E., Snaith, H. J. & McGehee, M. D. (2012). The renaissance of dye sensitised solar cells. Nature photonics, (6), 162-169.

Ito, K. & Nakazawa, T. (1988). Electrical and optical properties of stannite-type quaternary semiconductor thin films. Japanese Journal of Applied Physics, (11), 2094-2097.

Jiang, M. & Yan, X. (2015). Cu2ZnSnS4thin film solar cells: Present status and future prospects. Solar Cells – Research and Application Perspectives, (108), 107-117.

Jiang, C. S., Repins, I. C., Montinho, H. R., Ramanathan, K. & Aljassinn M. M. (2015). Investigation of micro-electric properties of CZTS thin films using scanning probe microscopy. Solar Energy Materials and Solar Cells, (132), 342-347

Krishnaiah, M., Anvita, K., Chaitanya, B., Parag, B. & Sudhanshu, M. (2016). Effect of solvent reaction time on morphology of Cu2ZnSnS4 (CZTS) nanoparticles and its application in dye sensitized solar cells. Materials today: proceeding, (3), 1778-1784.

Liu, W., Guo, B., Mak, C., Li, A., Wu, X. & Zhang, F. (2013). Facile synthesis ultrafine Cu2ZnSnS4 nanocrystals by hydrothermal method for use in solar cells. Thin solid films, (535), 39-43.

Malerba, C. (2014). An investigation into the stoichiometry effect on CZTS microstructure and optoelectronic properties. Solar Energy Materials and Solar Cells, (97), 433-438.

Nagoya, K. V., Pawara, S. M., Shinb, S. W., Moona, J. H. & Kima, P. S. (2010). Electrosynthesis of CZTS films by sulfurization of CZT precursor: effect of soft annealing treatment. Applied Surface Science, (238), 74-80.

Price, D. B., Mitzi, O., Gunawan, T. k. & Wang, K. (1999). The path towards a high performance solution-processed kesterite CZTS. Solar Energy Materials and Solar Cells, (95), 1421-1436.

Sarkar, S., Bhattacharjee, K., Das, G. C. & Chattopadhyay K. K. (2014). CrystEngComm. Royal Society of Chemistry, (16), 2634-2644.

Shuang, L., Huanying, Y., Fei, L., Yinglin, W., Shixin, C., Guochun, Y., Yichun, L. & Xintong, Z. (2018). Element substitution of kesterite Cu2ZnSnS4 for efficient counter electrode of dye sensitized solar cells. Scientific reports, (8), 8714-8717.

Tiong, T. T., Hreid, T., Will, G., Bell, J., & Wang, H. (2014). Polyacrylic acid assisted synthesis of CU2ZnSnS4 by hydrothermal method. Science of Advanced Materials, (6), 1467-1474.

Verma, S. K., Agrewal, V., Jain, K., Pasricha R. & Chand S. (2013). Green synthesis of nanocrystalline Cu2ZnSnS4 powder using hydrothermal rout. Journal of nanoparticles, (203), 1-7.

Wadia, C., Alivisatos, A. P. & Kammen, D. (2009). CZTS-based solar cell from sol-gel spin coating and its characterization. Evironment Science and Technology, (43), 2072-2077.

Wang, K., Mitzi, D. B., Barkhouse, R. & Aaron, D. (2011). Prospects and performance limitations for Cu-Zn-Sn-S-Se photovoltaic technology. Philadelvia Transnational Royal Society, (371), 1-22.

Washio, T., Shinj, T., Tajima, S., Fukano, T., Motohiro, T., Jumbo, K. & Katagari, H. (2015). Study of optical and structural properties of CZTS thins films grown by co-evapouration and spray pyrolysis. Iopscience, (65), 141-145.

Weber, R., Ishino, K., Moritake, R. & Minemoto, T. (2010). Improvement of CZTS thin film morphology using Cu-Zn-Sn-O precursor grown from sputtering. Current Applied Physics, (13), 1861-1870.

Wei, W., Sun, K. & Hu, Y. H. (2016). An efficient counter electrode material fordye-sensitized solar cells-flower-structured 1T metallic phase MoS2. Journal of Materials Chemistry, (4), 12398-12401.

Yan, H., Jiao, Y., Wu, A., Tian, C., Zhang, X., Wang, L., Ren, Z. & Fu, H. (2016). Cluster- like molybdenum phosphide anchored on reduced graphene oxide for efficient hydrogen evolution over a broad pH Range. Chemistry Communication, (52), 9530-9533.

Yang, W., Xu, X., Li, Z., Yang, F., Zhang, L., Li, Y., Wang, A. & Chen, S. (2016). Construction of efficient counter electrodes for dye-sensitized solar cells: Fe2O3 nanoparticles anchored onto graphene frameworks. Carbon, (96), 947-954.

Zhou, Z., Wang, Y., Xu, D.& Zhang, Y. (2010). Fabrication of Cu2ZnSnS4 screen printed layers for solar cells. Solar Energy Materials and Solar Cells, (94), 2025-2042.

Published

2025-09-30

How to Cite

Optimisation of Polyacrylic Acid Usage as Surfactant in Hydrothermally Synthesised Cu2ZnSnS4 Thin Films for Application as Counter Electrode in Dye Sensitised Solar Cell. (2025). Nigerian Journal of Applied Physics, 1(1), 99-109. https://doi.org/10.62292/njap-v1i1-2025-22

How to Cite

Optimisation of Polyacrylic Acid Usage as Surfactant in Hydrothermally Synthesised Cu2ZnSnS4 Thin Films for Application as Counter Electrode in Dye Sensitised Solar Cell. (2025). Nigerian Journal of Applied Physics, 1(1), 99-109. https://doi.org/10.62292/njap-v1i1-2025-22