Innovative Enhancement of Zinc Oxide Nanoparticles (ZnO-NPs) Toxicity for Effective Weevils Control

Authors

  • Sylvester Jande Gemanam
    Benue State University, Makurdi
  • Peter Ahime Yongo
    Moses Oshio Adasu University
  • Stephanie Avar-Tsue
    Moses Oshio Adasu University
  • Barnabas Achakpa Ikyo
    Moses Oshio Adasu University
  • Nursakinah Suardi
    School of Physics, Universiti Sains Malaysia, Malaysia
  • Damilola Oluwafemi Samson
    University of Abuja

Keywords:

Cowpea (Beans), Weevils, Low-Level Laser, Zinc Oxide , Nanoparticles, Irradiation, Mortality rate

Abstract

The research elucidates the innovative toxicity enhancement of ZnO NPs using a low-level laser of 405 nm wavelength (Ths-1220, China) for cowpea weevil control. Two batches of ZnO NPs were subjected to 15 and 30 minutes of laser irradiation. Irradiations were carried out in borosilicate glass test tubes using a 500 mW power laser beam spot of 4.0 mm. The 100 grams of non-infested cowpea samples were weighed in six replicates (R1, R2, R3, R4, R5, and R6) and a control. 90 active weevils (Callosbruchus maculatus) were obtained from an infested source of cowpea. The first batch of 15 minutes irradiated ZnO NPs was applied to the healthy beans in R1-R3, and the second batch of 30 minutes to R4-R6, likewise, the control. Replicates in the first batch registered weight losses between 0.70% and 1.20%, whereas the second batch showed minimal losses between 0.02% and 0.05%. By contrast, the control group experienced higher weight loss, between 1.10% and 2.80%. Statistical analysis via ANOVA did not reveal significant variations between groups and the Levene test indicated significant heterogeneity of variances (Sig. = 0.007). The application effect demonstrated a mortality rate of 99% compared to 70% in the 15-minute and 30-minute irradiated sample treatment groups, respectively, and 40% in the control group within 3 days.  It is plausible that the 15-minute exposure delivered a concentration of nanoparticles sufficient to induce acute toxicity, facilitating maximal interaction without oversaturation. Therefore, exhibiting ZnO NPs with promising insecticidal properties against weevils, resulting in optimal maximal mortality.

Dimensions

Abdelghani, G. M., Ben Ahmed, A., & Al-Zubaidi, A. B., (2022) “Synthesis, characterization, and the influence of energy of irradiation on optical properties of ZnO nanostructures,” Sci. Rep.., vol. 12, no. 1, p. 20016, https://doi.org/10.1038/s41598-022-24648-x.

Anandhi, S., Saminathan, V. R., Yasodha, P., Roseleen, S. S. J., Sharavanan, P. T., & Rajanbabu, V. (2020). Correlation of Fall armyworm Spodoptera frugiperda (JE Smith) with weather parameters in the maize ecosystem. Int J Curr Microbiol Appl Sci, 9(8), 1213-1218.

Asif, M., et al., (2022). “The Effect of Infrared Laser Irradiation on the Surface Morphology and Electrical Properties of Zinc Metal,” Physchem, vol. 3, no. 1, pp. 22–33, https://doi.org/10.3390/physchem3010003.

Atta, D., Wahab, H. A., Ibrahim, M. A. & Battisha, I. K. (2024). “Photocatalytic degradation of methylene blue dye by ZnO nanoparticle thin films, using Sol–gel technique and UV laser irradiation,” Sci. Rep.., vol. 14, no. 1, p. 26961, Nov. 2024, https://doi.org/10.1038/s41598-024-76938-1.

Bayram, O., Sener, E., İgman, E., & Simsek, O., (2019). “Investigation of structural, morphological and optical properties of Nickel-doped Zinc oxide thin films fabricated by co-sputtering,” J. Mater. Sci. Mater. Electron., vol. 30, no. 4, pp. 3452–3458, https://doi.org/10.1007/s10854-018-00620-2.

Bhattacharyya, A.; A. Bhaumik; P. Usha Rani; S. Mandal & T.E. Timothy (2010). Nanoparticles- A recent approach to insect pest control. African Journal Biotechnology, 9(24): 3489-3493

Biswas, A., Kar, U., & Jana, N. R. (2022). Cytotoxicity of ZnO nanoparticles under dark conditions via oxygen vacancy dependent reactive oxygen species generation. Physical Chemistry Chemical Physics, 24(22), 13965-13975.

Ecocrop,2009.Ecocrop database.FAO.

Eskin A., Nurullahoğlu, Z.U. Effects of zinc oxide nanoparticles (ZnO NPs) on the biology of Galleria mellonella L. (Lepidoptera: Pyralidae). JoBAZ 83, 54 https://doi.org/10.1186/s41936-022-00318-2

FAO, (2013). Grassland Index.A searchable catalogue of grass and forage legumes, FAO, ROME, Italy.

Farooq, W. A.,et al., (2014). “Influence of laser irradiation on the optical properties of nano-sized powder of metal oxide,” Russ. J. Phys. Chem. A, vol. 88, no. 13, pp. 2446–2450, https://doi.org/10.1134/S0036024414130056.

Gomez, C., (2004). Cowpea Post-Harvest Operations.In: Mejia(Ed), Post-Harvest Compendium, AGST, FAO.

Gutiérrez-Ramírez, J. A., Betancourt-Galindo, R., Aguirre-Uribe, L. A., Cerna-Chávez, E., Sandoval-Rangel, A., Ángel, E. C. D., ... & Hernández-Juárez, A. (2021). Insecticidal effect of zinc oxide and titanium dioxide nanoparticles against Bactericera cockerelli Sulc.(Hemiptera: Triozidae) on tomato Solanum lycopersicum. Agronomy, 11(8), 1460.

Ikechukwu, J., (2000). Cowpea hulls as potential feedstuff for broilers, Master of Science, Animal Nutrition and Biochemistry, University of Nigeria, Nsukka.

Jayachandran, A., T.R., A., & Nair, A. S., (2021). “Green synthesis and characterization of zinc oxide nanoparticles using Cayratia pedata leaf extract,” Biochem. Biophys. Reports, vol. 26, p. 100995, https://doi.org/10.1016/j.bbrep.2021.100995.

Khorsand Zak, A., Abd. Majid, W. H., Abrishami, M. E., & Yousefi, R., (2011). “X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot methods,” Solid State Sci., vol. 13, no. 1, pp. 251–256, https://doi.org/10.1016/j.solidstatesciences.2010.11.024.

Madambo, R.; Grubben, G.J.H.; Asante, I.K.; Akromah, R., (2006). Vigna Unguilata (L) Walp.Record From Protabase.Brink, M.& Belay, G. (Editors) PROTA (Plant Resources of Tropical Africa/Resources Vegetables de l'Afrique tropicale), Wageningen, Netherlands.

Pittarate, S., Rajula, J., Rahman, A., Vivekanandhan, P., Thungrabeab, M., Mekchay, S., & Krutmuang, P. (2021). Insecticidal effect of zinc oxide nanoparticles against Spodoptera frugiperda under laboratory conditions. Insects, 12(11), 1017.

Qi, K., Cheng, B., Yu, J., & Ho, W. (2017). Review on the improvement of the photocatalytic and antibacterial activities of ZnO. Journal of Alloys and Compounds, 727, 792-820.

Ruiz-Aguilar, M. Y., Aguirre-Uribe, L. A., Ramírez-Barrón, S. N., Pérez-Luna, Y. D. C., Castro-del Ángel, E., & Juárez, A. H. (2025). Insecticidal efficacy of zinc oxide and silicon dioxide nanoparticles against larvae of Spodoptera frugiperda JE Smith (Lepidoptera: Noctuidae) Efficacy of nanoparticles on Spodoptera frugiperda. Journal of Experimental Nanoscience, 20(1), 2466532.

Tassoni, A., Tedeschi, T., Zurlini, C., Cigognini, I. M., Petrusan, J. I., Rodríguez, Ó., ... & Corvini, P. F. (2020). State-of-the-art production chains for peas, beans, and chickpeas—valorization of agro-industrial residues and applications of derived extracts. Molecules, 25(6), 1383.

Sable, P., Thabet, N., Yaseen, J., & Dharne, G., (2022). “Effects on Structural Morphological and Optical Properties Pure and CuO/ZnO Nanocomposite,” Trends Sci., vol. 19, no. 24, p. 3092, https://doi.org/10.48048/tis2022.3092.

Yin, H., Casey, P. S., McCall, M. J., & Fenech, M. (2010). Effects of surface chemistry on cytotoxicity, genotoxicity, and the generation of reactive oxygen species induced by ZnO nanoparticles. Langmuir, 26(19), 15399-15408.

Mazhar, Z, et al., (2023).“Efficacy of ZnO nanoparticles in Zn fortification and partitioning of wheat and rice grains under salt stress,” Sci. Rep.., vol. 13, no. 1, p. 2022, https://doi.org//10.1038/s41598-022-26039-8.

Published

2025-09-30

How to Cite

Innovative Enhancement of Zinc Oxide Nanoparticles (ZnO-NPs) Toxicity for Effective Weevils Control. (2025). Nigerian Journal of Applied Physics, 1(1), 143-154. https://doi.org/10.62292/njap-v1i1-2025-15

How to Cite

Innovative Enhancement of Zinc Oxide Nanoparticles (ZnO-NPs) Toxicity for Effective Weevils Control. (2025). Nigerian Journal of Applied Physics, 1(1), 143-154. https://doi.org/10.62292/njap-v1i1-2025-15

Similar Articles

You may also start an advanced similarity search for this article.