Sustainable Synthesis and Characterization of Graphene Nanosheets from Coconut Husk: A Green Approach for Advanced Materials

Authors

  • Abdul Dahiru Buba
    University of Abuja
  • Clifford Chinedu Odiohamma
    University of Abuja, Nigeria
  • Medina Umar
    University of Abuja
  • Ramalan Abubakar

Keywords:

Graphene, Coconut Husk, Sustainable Synthesis, X-ray Diffraction (XRD), Raman Spectroscopy, Scanning Electron Microscope (SEM)

Abstract

Graphene, a two-dimensional carbon material with exceptional mechanical, electrical, and thermal properties, has attracted significant interest for advanced material applications. Conventional production methods often rely on hazardous chemicals and non-renewable resources, creating a need for more sustainable and environmentally friendly approaches. This study explores the environmentally friendly synthesis and characterization of graphene derived from coconut husk waste. This approach contributes to the dual goals of waste valorization and sustainable material development by employing eco-friendly methodologies for graphene production, minimizing the environmental impact compared to traditional methods. Scanning Electron Microscopy (SEM) analysis confirms the successful oxidation of graphite oxide into individual graphene oxide (GO) sheets with a layered and crumpled morphology, suggesting high surface area and self-assembly behavior, both crucial properties for various applications. Raman spectroscopy revealed two dominant peaks in the synthesized GO at 1378.89 cm⁻¹ and 1595.89 cm⁻¹, corresponding to the D and G bands, respectively, indicating the presence of both ordered sp² carbon and oxygen-induced defects. X-ray Diffraction (XRD) analysis unveiled the crystalline nature of the GO sample, with a prominent peak at 2θ = 10.13° corresponding to the (001) plane, characteristic of oxygen functional groups attached to the GO surface. This research demonstrates the successful conversion of coconut husk waste into high-quality graphene via a sustainable approach and emphasizes the potential for responsible production of advanced materials with diverse applications.

Author Biographies

Abdul Dahiru Buba

Professor of Solid State Physics,

Department of Physics,

University of Abuja.

Medina Umar

Solid State Physics (PhD)

Department of Physics,

University of Abuja.

Ramalan Abubakar

Solid State Physics (PhD)

Department of Physics, 

University of Abuja.

Dimensions

Avouris P, Chen Z, Perebeinos V., (2007);Carbon-based electronics, Nature Nanotechnology 2, 605-615

Bae. S. H. Kim, Y. Lee, X. Xu, J. Park, Y. Zheng, J. Balakrishnan, T. Lei, Song, Y. (2010) "Roll-to-roll production of 30-inch graphene films for transparent electrodes," Nature nanotechnology, vol. 5, no. 8, pp. 574 - 578.

Balandin, A. A. (2011) "Thermal properties of graphene and nanostructured carbon materials." Nature materials.; 10(8):569-581.

Bhuyan, S. A., Uddin, M. N., Islam, M. M., Bipasha, F. A., & Hossain, S. S. (2016). Synthesis of graphene. International Nano Letters, 6, 65–83.

Bolotin, K. I., Sikes, K. J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P., & Stormer, H. L. (2008). Ultrahigh electron mobility in suspended graphene. Solid State Communications, 146(9–10), 351–355.

Bunch, J. S; Verbridge, S. S. Alden, J. S. Van Der Zande, A. M. Parpia, J. M. Craighead,H.G and McEuen,P.L (2008) "Impermeable atomic membranes from graphene sheets," Nano letters, vol. 8, no. 8, pp. 2458-2462.

Cote, L. J.; Kim, F.; Huang, J. Langmuir-Blodgett, (2009), Assembly of Graphite Oxide Single Layers. J. Am. Chem. Soc. 131, 1043–1049.

Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L.;Hone, J. Nature Nanotechnology 2010, 5, pp 722-726.

Edwards, R.S. and Coleman, K.S. (2013) Graphene Synthesis: Relationship to Applications. Nanoscale, 5, 38-51.

Ferrari. A. C., F. Bonaccorso, V. Fal'ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. Koppens, V. Palermo, N. Pugno, (2015). "Science and technology roadmap for graphene, related two-dimensional crystals and hybrid systems," Nanoscale, vol. 7, no. 11, pp. 4598-4810.

Gu, W. T.; Zhang, W.; Li, X. M.; Zhu, H. W.; Wei, J. Q.; Li, Z.; Shu, Q. K.; Wang, C.; Wang, K. L.; Shen, W. C.(2009). Graphene Sheets from Worm-like Exfoliated Graphite. J. Mater. Chem. 19, pp. 3367-3369.

Gusynin. V. and S. Sharapov, (2005). "Unconventional integer quantum hall effect in graphene," Physical Review Letters, vol. 95, no. 14, pp. 146801.

Ivan Vlassiouk, Pasquale Fulvio, Harry Meyer, Nick Lavrik, Sheng Dai, Panos Datskos, Sergei Smirnov (2013) Large scale atmospheric pressure chemical vapor deposition of graphene;Carbon; Vol. 54; pp 58-67

Jun Liu, Yuhua Xue, Mei Zhang and Liming Dai (2012), Graphene-based materials for energy applications: pp. 1265-1277.

Lee, C. Wei, X. Kysar, J. W. and Hone, J. (2008) "Measurement of the elastic Properties and intrinsic strength of monolayer graphene," science, vol. 321, no. 5887, pp. 385-388.

Li, D, Muller M.B, Gilje, S, Kaner R,B, Wallace G,G.(2008). Processable aqueous dispersions of graphene nanosheets. Nature Nanotech; 3(2):101-5.

Morozov. S. K. Novoselov, M. Katsnelson, F. Schedin, D. Elias, J. Jaszczak,and A. Geim, (2008). "Giant intrinsic carrier mobilities in graphene and its bilayer,"Physical Review Letters, vol. 100, no. 1, p. 16602.

Neakanshika Chadha, Rahul Sharma & Parveen Saini (2021); A new insight into the structural modulation of graphene oxide upon chemical reduction probed by Raman spectroscopy and X-ray diffraction; Carbon Letters; Vol. 31; pp 1125–1131

Novoselov, K.S., A. K. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, S. Dubonos, and A. Firsov, (2005). "Two-dimensional gas of massless dirac fermions in graphene," nature, vol. 438, no. 7065, pp. 197-200.

Novoselov, K. S. Geim, A. K. Morozov, S. Jiang, D., Zhang, Y. Dubonos, S. Grigorieva,I. and Firsov, A. (2004) "Electric field effect in atomically thin carbon films," science, vol. 306, no. 5696, pp. 666-669.

Paria D, Roy K, Singh HJ, Kumar S, Raghavan S, et al. (2015). Ultrahigh field Enhancement and photo response in atomically separated arrays of plasmonic dimmers. Adv. Mater 27: 1751-1758.

Rikson Siburian and Junji Nakamura,(2012); Formation Process of Pt Subnano-Clusters on Graphene Nanosheets; The journal of Physical Chermistry C; 116, 22947−22953.

Schwierz, F. (2010) "Graphene transistors," Nature nanotechnology, vol. 5, no. 7, pp. 487-496.

Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. Nature Materials 2007, 6, pp 652-655.

Su, C.Y. Lu, A.Y. Xu, Y. Chen, F.R. Khlobystov, A.N. and Li, L.J. (2011). "High-quality thin graphene films from fast electrochemical exfoliation." ACS Nano.; 5(3):2332-2339.

Sukang Bae,Hyeongkeun Kim, Youngbin Lee,Xiangfan Xu, Jae-Sung Park,Yi Zheng, Jayakumar Balakrishnan, Tian Lei, Hye Ri Kim,Young Il Song, Young-Jin Kim, Kwang S. Kim, Barbaros Özyilmaz, Jong-Hyun Ahn, Byung Hee Hong & Sumio Iijima (2010); Roll-to-Roll Production of 30-Inch Graphene Films for Transparent Electrodes; Nature Nanotechnology, 5, 574-578.

Sunpreet Singh, Seeram Ramakrishna, Munish Gupta (2017); Towards zero waste manufacturing: A multidisciplinary review; Journal of Cleaner Production ; Volume 168; pp. 1230-1243

Tombros, N., C. Jozsa, M. Popinciuc, H. T. Jonkman, and B. J. Van Wees, (2007). "Electronic spin transport and spin precession in single graphene layers at room temperature," Nature, vol. 448, no. 7153,pp. 571-574.

Wei. W, J. Wang, L. Zhou, J. Yang, B. Schumann, Y. NuLi,(2011), Electrochem. Commun, 13, 399.

Wolf, E. L. (2013), Graphene: a new paradigm in condensed matter and device physics. Oxford University Press,. pp. 1-5.

Wu, H.; Hu, L. B.; Carney, T.; Ruan, Z. C.; Kong, D. S.; Yu, Z. F.; Yao, Y.; Cha, J. J.; Zhu, J.; Fan, S. H.; Cui, Y. Journal of the American Chemical Society 2011, 133, 27-29.

Zheling Li, L. Deng, I.A Kinloch, R.J. Young (2023); Raman spectroscopy of carbon materials and their composites: Graphene, nanotubes and fibres; Progress in Materials Science; Vol. 135, pp 8-10.

Zhu, Y. W.; Murali, S.; Cai, W. W.; Li, X. S.; Suk, J. W.; Potts, J. R.; Ruoff, R.(2010), S. Advanced Materials, 22, 5226-5226.

Published

2025-09-30

How to Cite

Sustainable Synthesis and Characterization of Graphene Nanosheets from Coconut Husk: A Green Approach for Advanced Materials. (2025). Nigerian Journal of Applied Physics, 1(1), 117-124. https://doi.org/10.62292/njap-v1i1-2025-8

How to Cite

Sustainable Synthesis and Characterization of Graphene Nanosheets from Coconut Husk: A Green Approach for Advanced Materials. (2025). Nigerian Journal of Applied Physics, 1(1), 117-124. https://doi.org/10.62292/njap-v1i1-2025-8

Similar Articles

You may also start an advanced similarity search for this article.